Компьютерный мастер - Allcorp66

Микроконтроллер это, можно сказать, маленький компьютер. Который имеет свой центральный процессор (регистры, блок управление и арифметическо-логическое устройство ), память , а также разную периферию , вроде портов ввода вывода , таймеров, контроллеров прерываний, генераторов разных импульсов и даже аналоговых преобразователей. Всего не перечислишь. Как нельзя перечислить все применения микроконтроллеров.

Но, если сильно все упростить, то основной функцией микроконтроллера является «дрыганье ножками». Т.е. у него есть несколько выводов (от 6 до нескольких десятков в зависимости от модели) и на этих выводах он может выставить либо 1 (высокий уровень напряжения, например +5вольт), либо 0 (низкий уровень напряжения, около 0.1 вольта) в зависимости от программного алгоритма зашитого в его память. Также микроконтроллер может определять состояние сигнала на своих ножках (для этого они должны быть настроены на вход) — высокое там напряжение или низкое (ноль или единица). Современные микроконтроллеры также почти поголовно имеют на борту Аналогово Цифровой Преобразователь — это штука подобная вольтметру, позволяет не просто отследить 0 или 1 на входе, а полноценно замерить напряжение от 0 до опорного (обычно опорное равно напряжению питания) и представить его в виде числа от 0 до 1024 (или 255, в зависимости от разрядности АЦП)

Из него можно сделать и умный дом, и мозги для домашнего робота, систему интеллектуального управления аквариумом или просто красивое светодиодное табло с бегущим текстом. Среди электронных компонентов МК это один из самых универсальных устройств. Я, например, при разработке очередного устройства предпочитаю не заморачиваться на различного рода схемотехнические извраты, а подключить все входы и выходы к микроконтроллеру, а всю логику работы сделать программно. Резко экономит и время и деньги, а значит деньги в квадрате.

Микроконтроллеров существует очень и очень много. Практически каждая уважающая себя фирма по производству радиокомпонентов выпускает свой собственный контроллер. Однако и в этом многообразии есть порядок. МК делятся на семейства, все их я не перечислю, но опишу лишь самые основные восьмиразрядные семейства.

MSC-51
Самое обширное и развитое это MSC-51 , старейшее из всех, идущее от intel 8051 и ныне выпускаемое массой фирм. Иногда кратко зовется С51 . Это 8-ми разрядная архитектура, отличается от большинства других восьмиразрядников тем, что это CISC архитектура. Т.е. одной командой порой можно совершить довольно сложное действие, но команды выполняются за большое число тактов (обычно за 12 или 24 такта, в зависимости от типа команды), имеют разную длину и их много, на все случаи жизни. Среди контроллеров архитектуры MSC-51 встречаются как динозавры вроде AT89C51 , имеющие минимум периферии, крошечную память и неважнецкое быстродействие, так и монстры вроде продукции Silicon Laboratories имеющие на борту весьма мясистый фарш из разнокалиберной периферии, огромные закрома оперативной и постоянной памяти, мощные интерфейсы от простого UART ‘a до USB и CAN , а также зверски быстрое ядро , выдающее до 100 миллионов операций в секунду. Что касается лично меня, то я обожаю архитектуру С51 за ее чертовски приятный ассемблер на котором просто кайфово писать. Под эту архитектуру уже написаны гигабайты кода, созданы все мыслимые и немыслимые алгоритмы.

Atmel AVR
Вторым моим любимым семейством является AVR от компании Atmel . Вообще Atmel производит и MSC-51 контроллеры, но все же основной упор они делают на AVR . Эти контроллеры уже имеют 8-ми разрядную RISC архитектуру и выполняют одну команду за один такт, но в отличии от классического RISC ядра имеют весьма развесистую систему команд, впрочем не такую удобную как у С51, за что я их недолюбливаю. Но зато AVR всегда снаряжены как на войну и просто напичканы разной периферией, особенно контроллеры подсемейства ATMega . А еще их очень легко прошивать, для этого не нужны ни специализированные программаторы, ни какое либо другое сложное обрудование. Достаточно лишь пяти проводков и компьютера с LPT портом. Простота освоения позволила этому контроллеру прочно запасть в сердца многих и многих радиолюбителей по всему миру.

Microchip PIC .
Еще один 8-ми разрядный RISC микроконтроллер, отличается весьма извратской системой команд, состоящей всего из пары десятков команд. Каждая команда выполняется за четыре такта. есть ряд достоинств, в первую очередь это низкое энергопотребление, и быстрый старт. В среднем PIC контроллере нет такого количества периферии как в AVR, но зато самих модификаций PIC контроллеров существует такое количество, что всегда можно подобрать себе кристалл с периферией подходящей точно под задачу, не больше не меньше. На PIC ‘ax традиционно построены бортовые компьютеры автомобилей, а также многочисленные бытовые сигнализации.

Какое же семейство выбрать? О, это сложный вопрос. На многочисленных форумах и конференциях по сей день идут ожесточенные бои на тему какое семейство лучше, фанаты AVR грызутся с приверженцами MSC-51 , попутно не забывая пинать по почкам PIC ‘овцев, на что те отвечают тем же.

Ситуация тут как в Starcraft:) Кто круче? Люди? Зерги? Протоссы? Все дело в применении, масштабах задач и массе других параметров. У каждого семейства есть свои достоинства и недостатки. Но лично я бы выбрал AVR и вот по каким причинам:

  • 1. Доступность в России. Эти контроллеры заслуженно популярны и любимы народом, а значит наши торговцы их охотно возят. Впрочем, как и PIC. С MSC-51 ситуация хуже. Морально устаревшие AT89C51 достать не проблема, но кому они нужны? А вот современные силабы это уже эксклюзив.
  • 2. Низкая цена. Вообще низкой ценой в мире славится PIC, но вот ирония — халявы начинаются только если брать его вагонами. На деле же, на реальном прилавке, AVR будет процентов на 30-40 дешевле чем PIC при несколько большем функционале. С MSC-51 ситуация ясна еще по первому пункту. Эксклюзив это не только редко, но и дорого.
  • 3. Очень много периферии сразу. Для серийного устройства это скорей недостаток. Куда лучше иметь только то, что надо в текущей задаче, а остальное чтобы не мешалось и не кушало зря энергию. Этим славится PIC со своим развесистым модельным рядом, где можно найти контроллер в котором будет нужное и не будет ненужного. Но мы то собираемся изучать и делать для себя! Так что нам лучше чтобы все, сразу и про запас. И вот тут AVR на голову выше чем PIC, выкатывая раз за разом все более фаршированные контроллеры. Купил себе какую-нибудь AtMega16A и все, можешь все семейство изучить.
  • 4. Единое ядро. Дело в том, что у всех современных AVR одинаковое ядро с единой системой команд. Есть лишь некоторые различия на уровне периферии (и те незначительные). Т.е. код из какой нибудь крошечной ATTiny13 легко копипастом перетаскивается в ATMega64 и работает почти без переделок. И почти без ограничений наоборот. Правда у старых моделей AVR (всякие AT90S1200) совместимость сверху вниз ограниченная — у них чуть меньше система команд. Но вот вверх на ура. У Микрочипа же существует целая куча семейств. PIC12/16/18 с разной системой команд. 12е семейство это обычно мелочь малоногая (вроде Tiny в AVR), а 18 это уже более серьезные контроллеры (аналог Mega AVR) И если код с 12го можно перетащить на 18, то обратно фиг.
  • 5. Обширная система команд контроллеров AVR. У AVR около 130 команд, а у Microchip PIC всего 35. Казалось бы PIC в выйгрыше — меньше команд, проще изучить. Ну да, именно так и звучит микрочиповский слоган, что то вроде «Всего 35 команд!». Только это на самом деле фигня. Ведь что такое команда процессора? Это инструмент! Вот представь себе два калькулятора — обычный, бухгалтерский и инженерный. Бухгалтерский куда проще изучить чем инженерный. Но вот попробуй посчитать на нем синус? Или логарифм? Нет, можно, не спорю, но сколько нажатий кнопок и промежуточных вычислений это займет? То то же! Куда удобней работать когда у тебя под рукой куча разных действий. Поэтому, чем больше система команд тем лучше.
  • 6. Наличие бесплатных кроссплатформенных компиляторов Си. Конечно, кряк всегда найти можно. Где где, а в нашей стране это проблемой никогда не было. Но зачем что то воровать если есть халявное? ;)
  • 7. Ну и последний аргумент, обычно самый весомый. Наличие того, кто бы научил и подсказал. Помог советом и направил на путь истинный. Я выбрал для себя AVR и на этом сайте (по крайней мере пока) досконально будет разбираться именно это семейство, а значит выбора у тебя особого нет:))))))

Ой, но этих же AVR целая прорва. Какой взять???
Интересный вопрос. Вообще МК лучше выбирать под задачу. Но для изучения лучше хапнуть что то фаршированное.

Для начала разберем маркировку, чтобы ты по прайсу сразу мог понять что за зверь перед тобой. Вот тебе пример

ATmega16А — 16PI

  • AT — сделано в Atmel
  • Mega — вид семейства. Существует еще Tiny и Xmega (новая — фаршу жуть, полный вертолет). Вообще задумывалось, что Тини это, вроде как, малобюджетное с малым количеством фарша и вообще ущербная, а Мега наоборот — все и сразу. В реальности, разница между семействами Тини и Мега по фаршу сейчас минимальная, но в Тини меньше памяти и корпуса у нее бывают с числом выводов от 6 до 20.
  • 16 — количество памяти флеша в килобайтах. Вообще тут не все так просто. Числом памяти является степень двойки. Так что Mega162 это не контроллер со 162КБ флеша, а своеобразная Мега16 модификации2 с памятью 16кб. Или вот Мега88 — не 88кб, а 8кб флеша, а вторая 8 это вроде как намек на то, что это дальнейшее развитие Мега8. Аналогично и Мега48 или Мега168. Тоже самое и семейством Тини. Например, Тини2313 — 2килобайта флеша. А что такое 313? А хрен знает что они имели ввиду:) Или Тини12 — 1кб Флеша. В общем, фишку просек.
  • А — префикс энергопотребления (обычно). Этой буквы может и не быть, но в новых сериях она присутствует почти везде. Например, V и L серии — низковольтные, могут работать от 2,7 вольт. Правда за низковольтность приходится платить меньше частотой. Но оверклокинг возможен и тут, ничто человеческое нам не чуждо:) A и P имеют новые серии AVR с технологией PicoPower т.е. ультраэкономичные. Разницы по фаршу и внутренней структуре с их безиндексовыми моделями нет, тут все различие в работе всяких спящих режимов и энергопотреблении. Т.е. Mega16A легко меняется на Mega16 без А. И ничего больше менять не нужно.
  • 16 — Предельная тактовая частота в мегагерцах. В реальности можно разогнать и до 20 ;)
  • P — тип корпуса. Важная особенность. Дело в том, что далеко не всякий корпус можно запаять в домашних условиях без геморроя. Рекомендую пока обратить внимание на P — DIP корпус. Это громоздкий монстр, но его легко запаять, а, главное, он легко втыкается в специальную панельку и вынимается из нее обратно. Корпуса вида SOIC (индекс S) или TQFP (индекс A) пока лучше отложи в сторонку. Без хорошего опыта пайки и умения вытравить качественную печатную плату к ним лучше не соваться.
  • I — Тип лужения выводов. I — свинцовый припой. U — безсцвиновый. Для тебя никакой совершенно разницы. Бери тот что дешевле.

Рекоменую следующие модели:

  • ATMega16A-16PU — недорогой (около 100-150р), много выводов, много периферии. Доступен в разных корпусах. Прост, под него заточен мой учебный курс и все дальнейшие примеры.
  • ATTiny2313-20SU — идеальный вариант для изготовления всяких часов/будильников и прочей мелкой домашней автоматики. Дешев (рублей 40), компактен. Из минусов — нет АЦП.
  • ATmega48/88/168 любой из этих контроллеров. Компактен (в корпусе tqfp является самым тонким и мелким из AVR), дешев (рублей 100-150), фарширован донельзя.
  • ATmega128 для искушенных. Большой, мощный, дофига памяти. Дорогой (около 400р)

Микроконтроллеры являются небольшими, но одновременно очень удобными приспособлениями для тех, кто желает создавать различные удивительные роботизированные или автоматизированные вещи у себя дома. В рамках этой статьи будет рассмотрено программирование AVR для начинающих, различные аспекты и нюансы этого процесса.

Общая информация

Микроконтроллеры можно встретить везде. Они есть в холодильниках, стиральных машинах, телефонах, станках на производстве, умных домах и ещё во множестве различных технических устройств. Их повсеместное применение обусловлено возможностью замены более сложных и масштабных аналоговых схем устройств. Программирование МК AVR позволяет обеспечить автономное управление над электронными устройствами. Эти микроконтроллеры можно представить как простейший компьютер, что может взаимодействовать с внешней техникой. Так, им под силу открывать/закрывать транзисторы, получать данные с датчиков и выводить их на экраны. Также микроконтроллеры могут осуществлять различную обработку входной информации подобно персональному компьютеру. Если освоить программирование AVR с нуля и дойти до уровня профессионала, то откроются практически безграничные возможности для управления различными устройствами с помощью портов ввода/вывода, а также изменения их кода.

Немного о AVR

В рамках статьи будет рассмотрено семейство микроконтроллеров, выпускаемых фирмой Atmel. Они имеют довольно неплохую производительность, что позволяет использовать их во многих любительских устройствах. Широко применяются и в промышленности. Можно встретить в такой технике:

  1. Бытовой. Стиральные машины, холодильники, микроволновые печи и прочее.
  2. Мобильной. Роботы, средства связи и так далее.
  3. Вычислительной. Системы управления периферийными устройствами, материнские платы.
  4. Развлекательной. Украшения и детские игрушки.
  5. Транспорт. Системы безопасности и управления двигателем автомобиля.
  6. Промышленное оборудование. Системы управления станками.

Это, конечно же, не все сферы. Они применяются там, где выгодно использовать не набор управляющих микросхем, а один микроконтроллер. Это возможно благодаря низкому энергопотреблению и Для написания программ используются языки С и Assembler, немного изменённые под семейство микроконтроллеров. Такие изменение необходимы из-за слабых вычислительных возможностей, которые исчисляются, как правило, в десятках килобайт. AVR-программирование без изучения этих языков не представляется возможным.

Как получить свой первый микроконтроллер?

AVR-программирование требует:

  1. Наличия необходимой среды разработки.
  2. Собственно самих микроконтроллеров.

Второй пункт рассмотрим подробнее. Существует три возможности обзавестись требуемым устройством:

  1. Купить непосредственно сам микроконтроллер.
  2. Обзавестись устройством в составе конструктора (например - Arduino).
  3. Собрать микроконтроллер самостоятельно.

В первом пункте ничего сложного нет, поэтому сразу перейдём ко второму и третьему.

Обзавестись устройством в составе конструктора

В качестве примера будет выбран известный Arduino. Это по совместительству удобная платформа для быстрой и качественной разработки различных электронных устройств. Плата Arduino включает в себя определённый набор компонентов для работы (существуют различные конфигурации). В неё обязательно входит AVR-контроллер. Этот подход позволяет быстро начать разработку устройства, не требует специальных умений и навыков, имеет значительные возможности в плане подключения дополнительных плат, а также в интернете можно найти много информации на интересующие вопросы. Но не обошлось и без минусов. Покупая Arduino, человек лишает себя возможности более глубоко окунуться в AVR-программирование, лучше узнать микроконтроллер, специфику его работы. Также негатива добавляет и относительно узкая линейка моделей, из-за чего часто приходится покупать платы под конкретные задачи. Особенностью также является и то, что программирование на "СИ" здесь отличается довольно сильно от стандартной формы. Несмотря на все свои недостатки, Arduino подходит для изучения новичкам. Но злоупотреблять не стоит.

Самостоятельная сборка

Следует отметить, что микроконтроллеры AVR отличаются достаточной дружелюбностью к новичкам. Собрать их самостоятельно можно с доступных, простых и дешевых комплектующих. Если говорить о плюсах, то такой подход позволяет лучше ознакомиться с устройством, самостоятельно выбирать необходимые комплектующие, подгоняя конечный результат под выдвигаемые требования, использование стандартных языков программирования и дешевизна. Из минусов можно отметить только сложность самостоятельной сборки, когда она осуществляется впервые, и нет нужных знаний и навыков.

Как работать?

Итак, допустим, что вопрос с микроконтроллером решился. Далее будет считаться, что он был приобретён или же куплен самостоятельно. Что ещё нужно, чтобы освоить AVR-программирование? Для этой цели нужна среда разработки (в качестве базиса подойдёт и обычный блокнот, но рекомендую остановиться на Notepad++). Хотя существуют и другие программы для программирования AVR, приведённое обеспечение сможет справиться со всеми требованиями. Также необходим программатор. Его можно приобрести в ближайшем магазине, заказать по интернету или собрать самостоятельно. Не помешает и печатная плата. Она не обязательна, но её использование позволяет сэкономить свои нервы и время. Также покупается/создаётся самостоятельно. И последнее - это источник питания. Для AVR необходимо обеспечить поступление напряжения на 5В.

Где и как учиться?

Создавать шедевры с нуля не получиться. Здесь необходимы знания, опыт и практика. Но где их взять? Существует несколько путей. Первоначально можно самостоятельно выискивать нужную информацию в мировой сети. Можно записать на курсы программирования (дистанционные или очные) для получения базовых навыков работы. Каждый подход имеет свои преимущества. Так, дистанционные курсы программирования будут более дешевыми, а может и бесплатными. Но если что-то не будет получаться, то при очных занятиях опытный разработчик сможет быстрее найти причину проблемы. Также не лишним будет ознакомиться с литературой, что находится в свободном доступе. Конечно, на одних книгах выехать не получится, но получить базовые знания про устройство, программирование на "СИ", "Ассемблере" и о других рабочих моментах можно.

Порты ввода/вывода

Это чрезвычайно важная тема. Без понимания того, как работают порты ввода/вывода, не представляется возможным внутрисхемное программирование AVR вообще. Ведь взаимодействие микроконтроллера с внешними устройствами осуществляется именно при их посредничестве. На первый взгляд новичка может показаться, что порт - это довольно запутанный механизм. Чтобы избежать такого впечатления, не будем детально рассматривать схему его работы, а только получим общее представление об этом. Рассмотрим программную реализацию. В качестве примера устройства был выбран микроконтроллер AtMega8 - один из самых популярных из всего семейства AVR. Порт ввода/вывода представляет собой три регистра, которые отвечают за его работу. На физическом уровне они реализовываются как ножки. Каждой из них соответствует определённый бит в управляющем реестре. Каждая ножка может работать как для ввода информации, так и для её вывода. Например, на неё можно повесить функцию зажигания светодиода или обработку нажатия кнопки. Кстати, три регистра, о которых говорилось, это: PORTx, PINx и DDRx. Каждый из них является восьмиразрядным (не забываем, что мы рассматриваем AtMega8). То есть один бит занимается определённой ножкой.

Работа регистров

Наиболее весомым в плане ориентации является управляющий DDRx. Он также является восьмиразрядным. Значения для него могут быть записаны 0 или 1. Как меняется работа контроллера при использовании нулей и единицы? Если в определённом бите выставить 0, то соответствующая ему ножка будет переключена в режим входа. И с неё можно будет считывать данные, что идут с внешних устройств. Если установить 1, то микроконтроллер сможет управлять чем-то (например, дать приказ транзистору пропустить напряжение и зажечь светодиод). Вторым по важности является PORTx. Он занимается управлением состояния ножки. Давайте рассмотрим пример. Допустим, у нас есть порт вывода. Если мы устанавливаем логическую единицу в PORTx, то посылается сигнал от микроконтроллера управляющему устройству начать работу. Например, зажечь светодиод. При установлении нуля он будет гаситься. То есть работать с управляющим регистром DDRx постоянно, нет надобности. И напоследок давайте о PINx. Этот регистр отвечает за отображение состояния ножки контроллера, когда она настроена на состояние ввода. Следует отметить, что PINx может работать исключительно в режиме чтения. Записать в него ничего не получится. Но вот прочитать текущее состояние ножки - это без проблем.

Работа с аналогами

AVR не являются единственными микроконтроллерами. Этот рынок поделен между несколькими крупными производителями, а также между многочисленными китайскими имитирующими устройствами и самоделками. Во многом они подобны. К примеру, программирование PIC/AVR сильно не отличается. И если есть понимание чего-то одного, то понять всё остальное будет легко. Но начинать путь рекомендуем всё же с AVR благодаря его грамотной структуре, дружелюбности к разработчику и наличию большого количества вспомогательных материалов, из-за чего процесс разработки можно значительно ускорить.

Техника безопасности

Когда будет вестись программирование микроконтроллеров AVR на "СИ" или на "Ассемблере", то необходимо работать очень осторожно. Дело в том, что выставив определённую комбинацию регистров и изменив внутренние настройки, можно спокойно заблокировать микроконтроллер. Особенно это касается фьюзов. Если нет уверенности в правильности своих действий, то лучше отказаться от их использования. Это же относится и к программаторам. Если покупать заводскую аппаратуру, то она будет прошивать микроконтроллеры без проблем. При сборке своими руками может возникнуть печальная ситуация, при которой программатор заблокирует устройство. Это может произойти как из-за ошибки в программном коде, так и через неполадки в нём самом. Кстати, об ещё одном (на этот раз позитивном) моменте, который ранее вскользь упоминался, но так и не был раскрыт полностью. Сейчас практически все современные микроконтроллеры обладают функцией внутрисхемного программирования. Что это значит? Допустим, что устройство было запаяно на плате. И чтобы сменить его прошивку, сейчас не нужно его выпаивать, ведь такое вмешательство может повредить сам микроконтроллер. Достаточно подключиться к соответствующим выводам и перепрограммировать его при их посредстве.

Какую модель выбрать?

В рамках статьи была рассмотрена AtMega8. Это довольно посредственный за своими характеристиками микроконтроллер, которого, тем не менее, хватает для большинства поделок. Если есть желание создать что-то масштабное, то можно брать уже своеобразных монстров вроде Atmega128. Но они рассчитаны на более опытных разработчиков. Поэтому, если нет достаточного количества опыта, то лучше начинать с небольших и простых устройств. К тому же они и значительно дешевле. Согласитесь, одно дело случайно заблокировать микроконтроллер за сто рублей, а совсем иное - за полтысячи. Лучше набить себе руку и разобраться в различных аспектах функционирования, чтобы в последующем не терять значительные суммы. Первоначально можно начать с AtMega8, а потом уже ориентироваться по своим потребностям.

Заключение

Вот и была рассмотрена тема программирования AVR в самых общих чертах. Конечно, ещё о многом можно рассказывать. Так, к примеру, не было рассмотрено маркирование микроконтроллеров. А оно может о многом сказать. Так, в основном микроконтроллеры работают на напряжении в 5В. Тогда как наличие, к примеру, буквы L может сказать о том, что для работы устройства достаточно только 2,7 В. Как видите, порой знания о маркировке могут сыграть очень важную роль в плане корректной и долговечной работы устройств. Время функционирования микроконтроллеров - это тоже интересная тема. Каждое устройство рассчитано на определённый период. Так, некоторые могут отработать тысячу часов. Другие же имеют гарантийный запас в 10 000!

При подключении резервных источников электроснабжения часто возникает вопрос о том, что такое АВР или автоматический ввод резерва. При помощи АВР осуществляется поддержание постоянного электроснабжения даже при кратковременных отключениях основного источника энергии - вот для чего он нужен. Чтобы правильно выбрать систему автоматического ввода резерва, необходимо понять, как работает АВР.

Прежде чем подключить к потребителям резервный источник электроснабжения, надо отключить их от общей энергосети. Сделать это можно вручную при помощи рубильника, но этот вариант сопряжен со сбоем в работе энергопотребителей. Непрерывную подачу электропитания в данном случае можно обеспечить только при помощи автоматики, вот для чего, собственно, нужен автоматический ввод резерва - АВР.

Давая определение АВР, можно сказать, что это такая система, которая при помощи контакторов или пускателей осуществляет перевод нагрузки с одного источника электроснабжения на другой. Пускатели представляют собой исполнительный механизм, при помощи которого непосредственно производится перевод нагрузки с основного источника питания на аварийный.

Другим основополагающим элементом в схемах АВР является реле контроля фаз, которое фиксирует параметры электрического тока в сети.

Кроме того, схемы АВР могут включать контроллеры, при помощи которых осуществляется контроль параметров при запуске генератора, и промежуточные реле, обеспечивающие различные дополнительные функции.

Схемы АВР, как правило, реализуют на щитах, для крупных объектов иногда используют шкафы. Существуют готовые решения, но для выполнения конкретных задач в заданных условиях и обеспечения наиболее полного функционала часто производят сборку АВР на основе комплектующих, удовлетворяющих конкретным техническим условиям. Перед подключением в обязательном порядке проводят испытание устройств АВР с подключением основной цепи через ЛАТР.

Стоит учесть тот факт, что одновременное питание от двух разных источников обладает следующими недостатками:

  • Высокие потери электрической энергии в питающем трансформаторе.
  • Токи «КЗ» при данном подключении на много больше, нежели в случаи раздельного схемы питания.
  • Усложняется защита оборудования.
  • Возникают сложности с выбором определённого режима работы.
  • Отсутствует возможность осуществления параллельного питания. Связано это с имеющейся релейной защитой и свойств оборудования.

Именно по этим причинам и возникла такая необходимость, как раздельное питание и мгновенное восстановление электричества для потребителей. С данной задачей превосходно справляется АВР. С помощью автоматического ввода резерва подключение питания происходит мгновенно, за 0,3 - 0,8 секунды.

Где применяются?

Системы автоматического ввода резерва устанавливаются на бензиновых или дизельных генераторах. Работают они в однофазной либо трёхфазной сетях переменного тока. Такие генераторы с автоматическим запуском являются незаменимыми устройствами вспомогательного питания.

Классификация

Аппараты АВР подразделяются на следующие типы:

  • Односторонней работы. В такой схеме имеется одна рабочая и одна резервная секция питающей электрической цепи.
  • Двухсторонней работы. Каждая питающая линия в таких устройствах может быть рабочей и резервной.

Какие требования предъявляются к устройствам АВР?

  1. Данные аппараты обязаны включаться за кротчайший интервал времени после того момента, как отключится основное питание потребителей.
  2. Устройство АВР должно срабатывать постоянно, не зависимо от того, какова была причина прекращения подачи электричества.
  3. Срабатывание обязано происходить однократно.

Как работает АВР

Для чего ещё нужен АВР? Благодаря данному аппарату осуществляется контроль минимально и максимально допустимого входного напряжения. Происходит и проверка наличия чередования фаз.

При падении напряжения на одной из фаз, а также изменениях частоты или просадках напряжения, то есть выхода этих параметров из заданных пределов основной цепи питания, посредством реле контроля фаз происходит размыкание контактов контактора на основном входе и замыкание контактов контакторов резервного входа. Далее срабатывают выключатели, происходит отключение потребителей от основного источника электроснабжения и подключение к резервному. Большинство схем АВР, как правило, работает по этому принципу.

При восстановлении параметров тока в основной цепи происходит замыкание контактов контактора основной цепи с одновременным размыканием контактов контактора резерва. Как правило, в схемах дополнительно имеется блокировка одновременного срабатывания катушек.

С помощью АВР вы сможете не допустить одновременного включения сразу двух линий (основной и резервной). В схемах, в которых применено секционирование, устройство автоматического ввода резерва заблокирует включение секционного «АВ». В случае надобности, АВР укомплектовываются специальной механической системой блокировки.

Данные аппараты могут устанавливаться в отдельных шкафах. В зависимости от мощности электропотребления, они могут быть: малогабаритными, полногабаритными, двух и трёх секционными. Также, АВР можно размещать в распределительных и вводных шкафах.

Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения испытания устройств АВР, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!

Попробуем разобраться что же представляет из себя AVR микроконтроллер, что это такое и из чего состоит. Узнаем какие есть семейства микроконтроллеров от фирмы ATMEL и в каких корпусах выпускаются микро-чипы от данного производителя. Сделаем выбор корпуса микросхемы, наиболее пригодного для знакомства с AVR микроконтроллерами.

Контроллеры и микроконтроллеры

Микроконтроллер - это электронное устройство, микросхема которая представляет собою маленький компьютер со своей памятью и вычислительным ядром(микропроцессором), а также с набором дополнительных интерфейсов для подключения самых разных устройств для ввода и вывода различной информации, управления устройствами и измерения различных параметров. Микропроцессор, оперативная память, флешь-память, порты ввода/вывода, таймеры, интерфейсы связи - все это заключено в одном кристалле, одной микросхеме которая и называется микроконтроллером.

Чем отличается микроконтроллер от контроллера? - под контроллером подразумевается определенная схема или плата с различными компонентами для контроля и выполнения поставленных задач, а микроконтроллер - это схема универсального контроллера, которая размещена на маленьком кристаллике микросхемы и которая способна работать по четко заданной программе.

Работа микроконтроллера и его периферии осуществляется по программе, которая записывается во внутреннюю память и способна храниться в такой памяти достаточно длительный срок(несколько десятков лет).

Что такое AVR микроконтроллер

AVR микроконтроллеры , производимые фирмой ATMEL - это семейство 8-битных и более новых 32-битных микроконтроллеров с архитектурой RISC, которые совмещают в себе вычислительное ядро, Flash-память и разнообразную периферию (аналоговые и цифровые входы и выходы, интерфейсы и т.п.) на одном кристале. Это маленькие и очень универсальные по функционалу микросхемки, которые могут выполнять контроль и управлять различными устройствами, взаимодействовать между собою потребляя при этом очень мало энергии.

Данное RISC-ядро было разработано двумя студентами из города Тронхейма (третий по населению город Норвегии, расположен в устье реки Нидельвы) - Альф Боген (Alf-Egil Bogen) и Вегард Воллен (Vegard Wollen). В 1995м году данные персоны сделали предложение корпорации ATMEL на выпуск новых 8-битных микроконтроллеров, с тех пор AVR микроконтроллеры заполучили большую популярность и широкое применение.

Что обозначает аббревиатура AVR? - здесь наиболее вероятны два варианта:

  1. A dvanced V irtual R ISC;
  2. A lf Egil Bogen V egard Wollan R ISC, в честь создателей - Альфа и Вегарда.

Весь класс микроконтроллеров поделен на семейства:

  • tinyAVR (например:ATtiny13, ATtiny88б ATtiny167) - начальный класс, миниатюрные чипы, мало памяти и портов, базовая периферия;
  • megaAVR (например: ATmega8, ATmega48, ATmega2561) - средний класс, больше памяти и портов, более разнообразная периферия;
  • XMEGA AVR (например: ATxmega256A3U, ATxmega256A3B) - старший класс, много ресурсов, хорошая производительность, поддержка USB, улучшенная безопасность;
  • 32-bit AVR UC3 (например: AT32UC3L016, ATUC256L4U) - новые высокопроизводительные 32-битные микроконтроллеры поддерживающие много технологий и интерфейсов среди которых USB, Ethernet MAC, SDRAM, NAND Flash и другие.

Микроконтроллеры AVR имеют обширную систему команд, которая насчитывает от 90 до 133 команд в зависимости от модели микроконтроллера. Для сравнения: PIC-микроконтроллеры содержат от 35 до 83 команд, в зависимости от семейства.

Большинство команд хорошо оптимизированы и выполняется за один такт, что позволяет получить хорошую производительность при небольших затратах ресурсов и энергии.

Корпуса для AVR микросхем

Микроконтроллеры AVR выпускаются в корпусах DIP, SOIC, TQFP, PLCC, MLF, CBGA и других. Примеры некоторых корпусов приведены на рисунке ниже.

Рис. 1. Корпуса микросхем для микроконтроллеров AVR - DIP, SOIC, TQFP, PLCC.

Как видим, корпуса для AVR микроконтроллеров есть на любой вкус и потребности. Можно выбрать недорогой чип в корпусе DIP8 и смастерить миниатюрную игрушку или же какое-то простое устройство, а можно купить более функциональный и дорогой микроконтроллер в корпусе TQFP64 и подключить к нему разнообразные датчики, индикаторы и исполнительные устройства для выполнения более серьезных задач.

Для начинающих программистов AVR наиболее удобны микросхемы в корпусе DIP, данные микросхемы удобно паять и они очень просто монтируются на разнообразных монтажных панелях, к примеру на Breadboard и других.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: